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 KARL AUINGER An Application of
 GRACINDA M. S. GOMES

 VICTORIA GOULD a Theorem of Ash
 BENJAMIN STEINBERG to Finite Covers

 Abstract. The technique of covers is now well established in semigroup theory. The
 idea is, given a semigroup S. to find a semigroup S having a better understood structure

 than that of S, and an onto morphism 0 of a specific kind from S to S. With the right
 conditions on 0, the behaviour of S is closely linked to that of S. If S is finite one aims to
 choose a finite S. The celebrated results for inverse semigroups of McAlister in the 1970's
 form the flagship of this theory.

 Weakly left quasi-ample semigroups form a quasivariety (of algebras of type (2, 1)),
 properly containing the classes of groups, and of inverse, left ample, and weakly left ample
 semigroups. We show how the existence of finite proper covers for semigroups in this
 quasivariety is a consequence of Ash's powerful theorem for pointlike sets. Our approach is
 to obtain a cover S of a weakly left quasi-ample semigroup S as a subalgebra of S x G, where
 G is a group. It follows immediately from the fact that weakly left quasi-ample semigroups
 form a quasivariety, that S is weakly left quasi-ample. We can then specialise our covering
 results to the quasivarieties of weakly left ample, and left ample semigroups. The latter
 have natural representations as (2, 1)-subalgebras of partial (one-one) transformations,
 where the unary operation takes a transformation a to the identity map in the domain of
 a. In the final part of this paper we consider representations of weakly left quasi-ample
 semigroups.

 Keywords: weakly left quasi-ample semigroup, proper cover

 2000 Mathematics Subject Classification: 20 M 07, 20 M 30

 1. Introduction

 The relation R is defined on a semigroup S by the rule that a 1 b if and
 only if

 ea = a X eb = b
 for all e E E(S). It is easy to see that the restriction of 1? to regular elements
 coincides with Green's relation R. In general Ri is strictly contained in R, as
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 may be seen by considering unipotent monoids, that is, monoids in which the
 only idempotent is the identity. For details of Green's relations, and other
 standard semigroup theoretic techniques, we recommend [8] to the reader.

 We say that a semigroup is weakly left quasi-ample, abbreviated wlqa, if
 every lZ-class contains a unique idempotent and, denoting the idempotent
 in the 'lZ-class of a G S by a+, the ample identity

 ae = (ae)+a
 for all a E S, e E E(S) is satisfied. If the idempotents of a wlqa semigroup S
 commute and lZ is a left congruence, then S is weakly left ample, abbreviated
 wla. Such semigroups are (2, 1)-subalgebras of semigroups of partial trans
 formations, where the binary operation is composition of mappings (from
 left to right) and the unary operation sends a to a+ where a+ is the iden
 tity map in the domain of a [7, 10, 11]. Wlqa semigroups are 'almost' inverse
 images of wia semigroups such that the inverse image of each idempotent
 is a left zero semigroup. The use of 'almost' is clarified in the final section;
 certainly the statement is true if li is a left congruence.

 A cover of a wiqa semigroup S is a wiqa semigroup S, together with
 an onto idempotent separating (2,1)-morphism 0 from S to S. In the case
 where S is a monoid, we require that S is also a monoid and 0 preserves the
 identity, that is, it is a (2, 1, 0)-morphism.

 Let S be a wlqa semigroup. We show that the idempotents of S form
 a left regular band and that the relation a on S, defined by the rule a a b
 if and only if ea = eb for some e G E(S), is the least unipotent monoid
 congruence on S. The semigroup S is proper if RZrn a is trivial. The structure
 of proper wla semigroups may be determined by unipotent monoids and
 semilattices [4]. The authors anticipate that an analogous result for proper
 wlqa semigroups would involve unipotent monoids and left regular bands.
 In earlier papers [4, 6] it is shown that every wla semigroup S has a proper
 cover, which may be chosen to be finite if S is finite. Here we show that the
 latter result may be deduced for the wider class of wlqa semigroups from

 Ash's celebrated theorem for pointlike sets [1].
 There is a "standard" method of constructing covers for semigroups and

 monoids, using the notion of relational morphism. If S and G are semigroups,
 then a relation b from S to G is a relational morphism if for all s, t C S,

 so 7& 0 and so to C (st)q$. In the monoid case, we insist that 1 C 1. This
 condition is superfluous if G is a finite group; moreover in this case 1 C em
 for each e C E(S).

 It is well known (see [15]) that a relation Qb S -* G is a relational
 morphism if and only if the graph of X, that is,
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 An Application of a Theorem of Ash to Finite Covers 47

 R:={(s,g) IgEsq$)}

 is a subsemigroup of S x G with the projection 0: R -* S being surjective.
 If G is a finite group, then from a comment above

 E(R) = {(e, 1): e E E(S)}

 and certainly, 0 is idempotent separating. It follows from the fact that
 the class of wlqa semigroups forms a quasivariety that R is wlqa; since 0
 preserves + we have that S = R is a cover of S. In order that this cover be
 proper we need a relational morphism X which separates any two distinct
 elements s and t for which s 7? t holds. In other words, we have to show that
 no set {s, t} of two distinct elements of S with s+ = t+ is pointlike. This
 will be established in Section 3 by the use of Ash's theorem [1].

 In Section 2 we sketch the necessary background on wlqa semigroups and
 monoids and related structures. Details may be found on the homepage of
 the third author at http:www-users.york.ac.uk/-vargl/ under '(Weakly)
 left E-ample semigroups'. The final section considers representations of wlqa
 semigroups by partial maps.

 2. Weakly left quasi-ample semigroups and monoids

 The class of wlqa semigroups is a quasivariety of algebras of type (2,1). The
 binary operation is semigroup multiplication; the unary operation is a 1-* a+.

 The proofs of the following two results are straightforward. Note that
 we do not claim the sets of quasi-identities are minimal, but aim for trans
 parency.

 LEMMA 2.1. Let S be an algebra of type (2, 1). Then S is a wlqa semigroup
 with a+ denoting the (unique) idempotent in the 'Z-class of a if and only if
 S satisfies the quasi-identities

 (xy)z = x(yz),

 (a+)2= a+, a+a = a, (e2 = e A ea a) =># ea+ = a+,

 (e2 = eAea+ = a+ Aa+e = e) X e = a+,
 ab+ = (ab+)+a.

 If the idempotents of a semigroup commute, then it is immediate that
 every element is 'z-related to at most one idempotent.
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 COROLLARY 2.2. Let S be an algebra of type (2, 1). Then S is a wla semi
 group with a+ denoting the (unique) idempotent in the R-class of a if and
 only if S satisfies the quasi-identities

 (xy)z = x(yz),

 (a+)2 = a+, a+a = a, (e2 = e A ea = a) =X ea+ = a+,

 (e2 = e A f 2= f) X~ ef = f e,

 ab+ (ab+)+a,
 a+ ? b+ X (ca)+ = (cb)+.

 The corresponding classes of monoids are, of course, quasivarieties of
 algebras of type (2, 1, 0) obtained by adding the quasi-identity 1 x = x = x 1
 to the above lists.

 An inverse semigroup is wla, where a+ = aa-1. Recall that a band
 B is left regular if it satisfies the identity ef = efe. Equivalently, B is a
 semilattice of left zero semigroups [14]. A band is left regular if and only if
 JZ is trivial [14]; clearly then, a left regular band is wlqa. Moreover, if S is a
 left regular band B of unipotent monoids such that E(S) is a subsemigroup
 (necessarily isomorphic to B), then S is wlqa, but not wla unless B is a
 semilattice. On the other hand, if S is regular and E(S) is a left regular
 band, that is, S is 7Z-unipotent (see for example [16]), then S is wlqa. For
 in this case, as commented in the Introduction, R. coincides with R1, so
 that it remains only to check that the ample identity holds. Let a, b E S
 and let a-1 be an inverse of a. Then, using the fact that E(S) is a band,
 (ab+a-l)ab+ = a(a-la)b+(a-la)b+ = a(a-la)b+ = ab+. Since ab+al is
 idempotent it follows that ab+a-1 = (ab+)+. Hence

 (ab+)+a = (ab+a-1)a = a(a-la)b+(a-la) = a(a-la)b+ = ab+,
 using the fact that E(S) is left regular. Numerous further examples of wlqa
 semigroups may be found in the references.

 LEMMA 2.3. Let S be a wlqa semigroup. Then E(S) is a left regular band.

 PROOF. Let e, f E E(S). Using the ample condition,

 (ef)2 = (ef)(ef) = (ef)+e(ef) = (ef)+(ef) = ef,

 so that E(S) is a band. Further,

 efe = (ef)+e = ef,

 since ef C E(S).
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 If S is a wla semigroup the relation a defined on S by the rule that for
 any a, b c S,

 a a b X ea = eb

 for some e E E(S), is the least unipotent monoid congruence on S [5]. We
 extend this result to wlqa semigroups.

 PROPOSITION 2.4. Let S be a wlqa semigroup. Then the relation a defined
 above is the least unipotent monoid congruence on S.

 PROOF. Clearly, if a is a unipotent monoid congruence, it must be the least
 such.

 We begin by showing that if a, b E S and ea = fb for some e, f E E(S),
 then a a b. To see this, recall that E(S) is left regular so that

 (ef)a = (efe)a = (ef)(ea) = (ef)(fb) = (ef)b.

 Clearly a is reflexive, symmetric and right compatible. If a, b, c E S and
 a a b, then we have that ea = eb for some e C E(S). The ample condition
 gives that

 (ce)+ca = cea = ceb = (ce)?cb,
 whence a is left compatible.

 To see that a is transitive, suppose that a, b, c c S and e, f C E(S) with
 ea = eb and fb = fc. Then

 ef a = efea = efeb = efb = efc,

 so that a a c and a is a congruence.
 For any e, f c E(S) we have

 (ef)e = ef = (ef)f,
 so that e a f. Using the ample condition, it is easy to see that a is a monoid
 congruence. Finally, if a c S with aa idempotent, then there exists e E E(S)
 with ea = ea2. Now

 (eae)2 = (eae)ae = ((eae)+(ea))ae = (eae)+ea2e = (eae)+eae = eae,
 so that eae, eae(ae)+ c E(S). Moreover,

 (eae)(ae)+a = (eae)(ae) = (eae)(eae),
 so by the comment at the beginning of this proof, a a eae. Thus S/cr is a
 unipotent monoid. N

 If S is finite, perforce a is the least group congruence on S. This is also
 the case when S is R-unipotent [3]. As for wla semigroups, we say that a
 wlqa semigroup is proper if 7? n ca is the identity relation.
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 3. Finite proper covers

 The relation <a is defined on a semigroup S by the rule that

 a <_- b if and only if for all e E E(S), eb = b implies that ea = a.

 Clearly <a is a quasiorder, with associated equivalence relation Rz. Conse
 quently we have:

 LEMMA 3.1. Let S be a semigroup. For all a, b, c C S
 (i) ab<a;
 (ii) if abciZa, then ablZ a.

 The following minor observation will be used repeatedly.

 LEMMA 3.2. Let S be a wlqa semigroup, a E S and e E (S). Then

 ae 7Z a if and only if ae = a.

 PROOF. If ae 1Z a, then using the ample identity,

 a = a+a = (ae)+a = ae.

 LEMMA 3.3. Let S be a wlqa semigroup. Then

 N = {s E S: xsfZx implies that xs x}

 is a subsemigroup and E(S) C N.

 PROOF. From Lemma 3.2, E(S) C N. If st C N and xst7zx, then by
 Lemma 3.1, we have xs7Zx so that as s E N, xs = x. Now xtlZx, so that
 as t C N we have x = xt = xst. Thus N is a subsemigroup.

 Recall that for an element s of a semigroup S, s' is a weak inverse of s
 if s'ss' = s'; we let W(s) denote the set of weak inverses of s. Notice that if
 s' c W(s), then ss', s's C E(S). A weak conjugate of t E S is an element of
 the form sts' or s'ts.

 LEMMA_3.4. Let S be a wlqa semigroup. If a, b C W(c) for some a, b, C C S5
 and xa Z x l fxb, then xa = xb.

 PROOF. From xaca = xa lZx we have that x Rxac, so that x = xac by
 Lemma 3.2. Now xb = xacbfZxa so that again by Lemma 3.2, xa = xacb =
 xb.
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 Recall from [9] that a subset X of a semigroup S is pointlike (with respect
 to finite groups) if for every relational morphism : S -- G to a finite
 group G, there exists g c G such that X C gq-1. We begin with the well
 known characterisation of pointlike sets (see Theorem 1.2 of [9]) which is
 a consequence of Ash's theorem (Theorem 2.1 in [1]) and the fact that in
 a semigroup in which the idempotents form a band B, B is closed under
 weak conjugation. For a detailed discussion of Ash's theorem the reader is
 referred to Almeida [2]. We remark that the results of [9] are phrased for
 monoids; here we use the corresponding semigroup versions.

 THEOREM 3.5. /9] Let S be a finite semigroup in which the idempotents form
 a band; then {s, t} C S is pointlike if and only if there are factorisations of
 s and t:

 s - eocieC2 ... eklckek and t = fodlfld2 ... fk-ldkfk

 where ei E E(S1),i E {O,...,k}, and for each i G {l,... ,k}, either
 ci=di or ci, di E W(bi) for some bi c S.

 PROPOSITION 3.6. Let S be a finite wlqa semigroup. If {s, t} is pointlike
 and xs /Z x fZ xt, then xs = xt.

 PROOF. By Ash's theorem above, there are factorizations

 s = eoclelc2 ... eklCkek and t = fOd1f1d2 ... fk-ldkfk

 where ei, fi c E(S1), i G {O ... , k}, and for each i e {1,... ,k}, either ci =d
 or cidi c W(bi) for some bi c S.

 Let
 s1 =eo, S2 =eocl S3 =eolel, , S2k+l =s

 and
 t= fot2 fodt3 = fod1f1... ,t2k+1 = t.

 It follows from Lemma 3.1 that

 xsiR-xR-xti

 for each i E {1, . . ., 2k + 1}. Repeated applications of Lemmas 3.2 and 3.4
 give the required result. U

 In the next result, which is crucial, we show that each lZ-class of S
 intersects with each pointlike set in at most one element.
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 LEMMA 3.7. Let S be a finite wlqa semigroup. Then for any s, t with {s, t}
 pointlike and s+ = t+, we have that s = t.

 PROOF. Let {s, t} C S be pointlike such that s+ = t+. We have

 s+s fz s+ fz s+t

 so that s+s = s+t by Proposition 3.6. Hence s = t. U

 We thus are able to prove our main result.

 THEOREM 3.8. Each finite weakly left quasi-ample semigroup S has a finite
 proper weakly left quasi-ample cover.

 PROOF. If ft is the identity relation then S is proper. Otherwise, let
 {ai, bi}, .. ., {ak, bk} be a list of all pairs of distinct -&-related elements of S.
 By Lemma 3.7, none of these pairs is pointlike. Hence for each i C {1,. . ., k}
 there is a finite group Gi and a relational morphism Xi: S -- Gi such that
 aq5i n bi0i = 0. Now define

 A: S -3G1 x ... xGk=G, s$=sq x ... x Sqk.

 It is easy to check that q is a relational morphism.
 Let R and 0 constitute the "standard" cover obtained from q as in the

 Introduction. As commented there, Ef(R) = E(S) x {1}. Now if (s, g) c R,
 then in the direct product S x G,

 (s, g)+ = (s+, g+) = (s+,1) CR

 so that R is a (2, 1)-subalgebra of S x G. By virtue of the fact that wlqa
 semigroups form a quasivariety, R is wlqa. It remains to show that R is
 proper.

 Let (s, g), (t, h) C R with (s, g) ft n af (t, h). Then

 (s, g)+ = (t, h)+ and (e, 1) (s, g) = (e, 1) (t, h)

 for some e E E(S). It follows that s+ = t+ and g = h E so n to. Since
 g = (91,... ,9k) where gi E sai n t/j, the set {s,t} must be pointlike. By
 Lemma 3.7, s = t. Hence R is proper. U

 Since the cover S of S constructed in Theorem 3.8 is a (2, l)-subalgebra
 of S x G, where G is a group, it follows that if S is wla, then so is S.
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 Moreover, if S is left ample, that is, R* = R (see [6]), or equivalently it
 satisfies the quasi-identity

 (s4 = t+ A xs = ys) = xt = yt,

 then so does S. Indeed S is always left ample if S is wla [6].
 Finally, we remark that Theorem 3.8 holds equally well for monoids, in

 view of the fact that in a relational morphism X between monoids, 1 C 10
 so that in Theorem 3.8, (1, 1) E R and (1, 1)0 = 1.

 4. Representations

 Enlarging on a comment in the Introduction, we have the following result,
 which stems from a number of sources. We denote the identity map on a set
 Y by Jy and for a set X, we put

 Ex={Iy :YCX}.

 PROPOSITION 4.1. /7, 10, 11] Let P'Tx denote the monoid of partial trans
 formations on a set X and let a s-* a+ be the unary operation on PTx
 which takes a to Idom a. Then any (2, 1)-subalgebra S of PTx such that
 E(S) C Ex is a wla semigroup.

 Conversely, if S is a wla semigroup, then there is a (2, 1)-embedding b
 from S into PYTx such that E(Sq$) C Ex.

 The aim of this section is to represent wlqa semigroups by partial trans
 formations, or by direct products of such, in such a way that if S is wla
 then the representation is faithful. In the proof of Proposition 4.1, X may
 be taken to be S. For wlqa semigroups we need to develop further the al
 ternative approach of generalised Schiitzenberger representations, already
 utilised in the previous section. We adopt standard convention in denoting
 the 'k-class of an element a of a semigroup S by Ra; we put

 X= {Ra a c S}.

 LEMMA 4.2. Let S be a wlqa semigroup and let X c X. Then S acts on X
 on the right by partial functions if we define

 x S s if xsRx
 undefined otherwise

 PROOF. We denote the action of s by px. We need only show that dom
 px74x = dom px. But this is a consequence of Lemma 3.1.
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 COROLLARY 4.3. Let S be wlqa and let X C X. Then XX: S -+ xPT given
 by sqX = pX is a semigroup morphism. For any e C E(S), eqX C Ex.
 Consequently, if R is a left congruence, Ox preserves

 PROOF. If e c E(S) and x E dom pex, then xe Rx so that by Lemma 3.2,

 XPeX =xe = x.

 If Uk is a left congruence, then for any s e S, dom pX = dom pX so that

 (soX)+ = (Px)+ = 'dom px =dom pX+ P= (q

 In any semigroup S containing a zero 0, {O} is clearly an ft-class. If S is
 wlqa then choosing X to be Ro in the above result, the representation of S
 in P'Tx is trivial. We wish our representation to be as 'faithful as possible';

 more precisely, that it identifies only L-related idempotents, and is faithful
 if S is wla. To achieve the result we require we take the direct product of

 all the representations OX.

 PROPOSITION 4.4. Let S be a wlqa semigroup and let

 : S -* P = HxcxPax

 be given by (sq)x - sox. Then X is a semigroup morphism such that
 (i) if s/ c E(P), then s C E(S);
 (ii) E(So) C HxexEx;
 (iii) for any e c E(S), (e)/-1Z' is the ?-class of e.

 PROOF. (i) Suppose that s C S and so e E(P), so that px = px2 for all
 X c X. Let X = Rs? Since s s1Zs+ we have s+ E dom px = dom p42
 and s s S?2, so that s = s2

 (ii) This is an immediate consequence of (i) and Corollary 4.3.
 (iii) Let e E E(S) so that by (i), (e )0-1 C E(S). Suppose that fg C

 (eq)$-1. Then pX - pX for all X C X; putting X = Rf we have fglZ f since
 f E dom px. Thus f = fg by Lemma 2.3; we deduce that (eq)qY1 C Le.

 Conversely, suppose that h C E(S) and h Le. For any X C X,

 {x C X: xR4xe} = {x e X: x = xe} =

 {x C X: x = xh} = {x C X: xRlxh}

 so that px = Ph and eq = ho.
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 We would like to deduce from the previous result that So is wla . If
 Y is any collection of sets and for each Y E Y, Ty is a (2, 1)-subalgebra of
 P'Ty with E(Ty) C Ey, then by Lemma 2.1, HyEyTy is wla. In Proposi
 tion 4.4 we certainly have that the idempotents of So are all of the correct
 form. However, consequent upon the following result, So may not be closed
 under +.

 THEOREM 4.5. Let S be a weakly left quasi-ample semigroup and let b be
 defined as in Proposition 4.4. Then the following are equivalent:

 (i) q preserves +;
 (ii) for each a c S, (aq)+ = eq for some e C E(S);
 (iii) So is closed under +;
 (iv) RZ is a left congruence.

 If any of these conditions holds, So is weakly left ample.

 PROOF. That (i) implies (ii) is clear and that (iii) implies (ii) follows from
 Proposition 4.4. Suppose now that (ii) holds. Let a C S and suppose that
 (aq)+ = e where e c E(S); we show that (ao)+ = a+0, so that (i) and (iii)
 hold. For any X E X, (aqx)+ = eqX so that Idom px = px and dom px -
 dom px. This gives from Lemma 3.2 that

 {x C X: xRPxa} = {x c X: xR1xe} = {x c X: x = xe}.

 Since a+?RZa+a, if we put X Ra+ we obtain a+ = a+e. On the other
 hand, as e = ee putting X Re we have eRzea and so

 efZ ea = ea+a<&ea+<&e

 so that efzea+ and so e = ea+, as E(S) is a left regular band. Thus eLa+
 and it follows from Proposition 4.4 that (ao)+ = em = a+q.

 Corollary 4.3 gives that (iv) implies (i). Finally, we assume that (i) holds,
 so that for any X C X and a e S, (aqX)+ - a+qX so that dom pax = dom
 pX. Let x E S and put X = . Then xa+a+ Rxa+ so that xa+ C dom
 Pa+ and hence xa+?'Zxa+a = xa. It follows that if uvw C S and v JZw,
 then

 uv zuv+ = uw+Jzuw

 and 11 is a left congruence.
 The final statement of the theorem follows from the comments immedi

 ately preceding its statement.

This content downloaded from 144.32.101.114 on Thu, 21 Dec 2017 10:02:38 UTC
All use subject to http://about.jstor.org/terms



 56 K. Auinger, G. M. S. Gomes, V. Gould, and B. Steinberg

 COROLLARY 4.6. Let S be a wia semigroup. Then q as defined in Proposition

 4.4 is an embedding.

 PROOF. From Theorem 4.5, X preserves +. Suppose that a, b C S with
 aq = by. Then a+q = b+?q so that by Proposition 4.4, a+ = b+. Putting
 X = Ra+ and using the fact that OX = OX we obtain a+a = a+b, whence
 a=b.

 If S is a two element null semigroup with an identity then it is easy to
 see that S is wlqa but fZ is not a left congruence.

 The results of this section are immediately adaptable to monoids; in each
 case the representation preserves the identity.
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